HMI line-of-sight magnetogram and continuum images now available.


Today we are making available images from the Helioseismic Magnetic Imager (HMI), an instrument on board the Solar Dynamics Observatory. HMI is designed to study oscillations and the magnetic field at the solar surface, or photosphere. We are providing line-of-sight magnetograms and continuum images* based on HMI science data. A line-of-sight magnetogram measures the flux of magnetic field as seen along the line of sight from HMI to the Sun. A continuum image is formed by filtering portions of the visible light part of the spectrum.

The line-of-sight magnetograms shows blobs of dark emission, and blobs of brighter emission. These correspond to opposite polarity magnetic fields breaking through the Sun’s photosphere. The magnetic field is important as it is related to the activity seen in layers of the Sun’s atmosphere such as the corona (which is observed by AIA). The continuum images allow us to track the evolution of sunspots. These images are important as they allow us to better understand the dynamic nature of the solar atmosphere.

The primary goal of the Helioseismic and Magnetic Imager (HMI) investigation is to study the origin of solar variability and to characterize and understand the Sun’s interior and the various components of magnetic activity. HMI makes measurements of the motion of the solar photosphere to study solar oscillations and measurements of the polarization in a specific spectral line to study all three spatial components of the photospheric magnetic field. HMI produces data to determine the interior sources and mechanisms of solar variability and how the physical processes inside the Sun are related to surface magnetic field and activity. It also produces data to enable estimates of the coronal magnetic field for studies of variability in the extended solar atmosphere, which is where the Earth is. Solar variability that affects the Earth is called “space weather”. HMI observations will help establish the relationships between internal dynamics and magnetic activity. In turn this will lead to better understanding of solar variability and its effects.

For much more information on HMI, please visit http://hmi.stanford.edu/. For more information on SDO, please visit http://sdo.gsfc.nasa.gov.

* HMI is a successor to the Michelson Doppler Imager (MDI) on the Solar and Heliospheric Observatory (SOHO). The Helioviewer Project has MDI line-of-sight magnetogram and continuum images going back to early 1996.

Did you like this? Share it:
  1. #1 by Viktor Zholudev on April 4, 2011 - 7:17 am

    Quite nice to find physical sense of the partial magnetic fields found within the framework of the inverse problem using Principal Component Analysis (PCA) of the Solar Magnetic Fields.

(will not be published)